A Multi-Energy System Expansion Planning Method Using a Linearized Load-Energy Curve: A Case Study in South Korea

نویسندگان

  • Woong Ko
  • Jong-Keun Park
  • Mun-Kyeom Kim
  • Jae-Haeng Heo
چکیده

Multi-energy systems can integrate heat and electrical energy efficiently, using resources such as cogeneration. In order to meet energy demand cost-effectively in a multi-energy system, adopting appropriate energy resources at the right time is of great importance. In this paper, we propose an expansion planning method for a multi-energy system that supplies heat and electrical energy. The proposed approach formulates expansion planning as a mixed integer linear programming (MILP) problem. The objective is to minimize the sum of the annualized cost of the multi-energy system. The candidate resources that constitute the cost of the multi-energy system are fuel-based power generators, heat-only boilers, a combined heat and power (CHP) unit, energy storage resources, and a renewable electrical power source. We use a load-energy curve, instead of a load-duration curve, for constructing the optimization model, which is subsequently linearized using a Douglas-Peucker algorithm. The residual load-energy curve, for utilizing the renewable electrical power source, is also linearized. This study demonstrates the effectiveness of the proposed method through a comparison with a conventional linearization method. In addition, we evaluate the cost and planning schedules of different case studies, according to the configuration of resources in the multi-energy system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-objective Dynamic Planning of Substations and Primary Feeders Considering Uncertainties and Reliability

This research uses a comprehensive method to solve a combinatorial problem of distribution network expansion planning (DNEP) problem. The proposed multi-objective scheme aims to improve power system's accountability and system performance parameters, simultaneously, in the lowest possible costs. The dynamic programming approach is implemented in order to find the optimal sizing, siting and timi...

متن کامل

A Multi-Year Scenario-Based Transmission Expansion Planning Model Incorporating Available Transfer Capability

This paper presents a multi-year scenario-based methodology for transmission expansion planning (TEP) in order to enhance the available transfer capability (ATC). The ATC is an important factor for all players of electricity market who participate in power transaction activities and can support the competition and nondiscriminatory access to transmission lines among all market participants. The...

متن کامل

Multi Attribute Investment Planning of a Grid-Connected Diesel/Wind/PV/Battery Hybrid Energy System

Recently, along with the depletion of fossil fuels and growing electrical requirements, more attention has been paid on utilizing Renewable Energy Sources (RESs). The Chichest tourism complex is located 20 km far from Orumieh, Iran which has been supplied through the main distribution grid connection. But, recently the trend is to expand the share of RESs in supplying microgrids demand. Hence, ...

متن کامل

A Mathematical Model for Multi-Region, Multi-Source, Multi-Period Generation Expansion Planning in Renewable Energy for Country-Wide Generation-Transmission Planning

Environmental pollution and rapid depletion are among the chief concerns about fossil fuels such as oil, gas, and coal. Renewable energy sources do not suffer from such limitations and are considered the best choice to replace fossil fuels. The present study develops a mathematical model for optimal allocation of regional renewable energy to meet a country-wide demand and its other essential as...

متن کامل

Probabilistic Reliability Based Grid Expansion Planning of Power System Including Wind Turbine Generators

This paper proposes a new methodology for evaluating the probabilistic reliability based grid expansion planning of composite power system including the Wind Turbine Generators. The proposed model includes capacity limitations and uncertainties of the generators and transmission lines. It proposes to handle the uncertainties of system elements (generators, lines, transformers and wind resources...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017